Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries

ADVANCED ENERGY MATERIALS(2021)

引用 45|浏览12
暂无评分
摘要
Rechargeable Zn-ion batteries (ZIBs) are widely regarded as promising candidates for large-scale energy storage applications. Like most multivalent battery systems (based on Zn, Mg, Ca, etc.), further progress in ZIB development relies on the discovery and design of novel cathode hosts capable of reversible Zn2+ (de)intercalation. Herein, this work employs VPO4F as a ZIB cathode and explores ensuing intercalation mechanisms along with interfacial dynamics during cycling to quantify the water dynamics in concentrated electrolytes and/or hybrid aqueous-non aqueous (HANEs) electrolyte(s). Like most oxide-based cathode materials, proton (H+) intercalation dominates electrochemical activity during discharge of ZnxHyVPO4F in aqueous media due to the hydroxylated nature of the interface. Such H+ electrochemistry diminishes low-rate and/or long-term electrochemical performance of ZIBs which inhibits implementation for practical applications. Thus, quantification of the water dynamics in various electrolytes is demonstrated for the first time. Detailed investigations of water mobility in various concentrated electrolytes and HANEs systems enable the design of an electrolyte that enhances aqueous anodic stability and suppresses water/proton activity during discharge. Tuning Zn2+/H+ intercalation kinetics simultaneously allows for a high voltage (1.9 V) and long-lasting aqueous zinc-ion battery: Zn|Zn(OTf)(2)center dot nH(2)O-PC|ZnxHyVPO4F.
更多
查看译文
关键词
aqueous batteries, electrolytes, proton intercalation, Zn-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要