Green Inp/Znses/Zns Core Multi-Shelled Quantum Dots Synthesized With Aminophosphine For Effective Display Applications

ADVANCED FUNCTIONAL MATERIALS(2021)

引用 72|浏览16
暂无评分
摘要
InP quantum dots (QDs) are emerging as promising materials for replacing cadmium-based QDs in view of their heavy metal-free and tunable luminescence. However, the development of InP QD materials still lags due to the expensive and flammable phosphorus precursors, and also the unsatisfactory repeatability caused by the fast nucleation rate. Adopting lowly reactive P precursor aminophosphine can overcome this issue, but their low photoluminescence quantum yield (PLQY) and widening line widths do not apply to the practical application. Through engineering, the core-shell structure of QD, significantly promoted green emissions of QDs were obtained with PLQY of 95% and full width and half maximum (FWHM) of 45 nm, which demonstrated the highest PLQY record obtained from the aminophosphine system. Moreover, due to the residue halogen atoms on the QD surface as inorganic ligands to prevent further oxidization, these InP QDs demonstrated the ultra-long operational lifetime (over 1000 h) for QDs based color enhancement film. By optimizing the device structure, an inverted green InP quantum dot light-emitting diode (QLED) with external quantum efficiency (EQE) of 7.06% was also demonstrated, which showed a significant promise of these InP QDs in highly effective optoelectronic devices.
更多
查看译文
关键词
alloyed, inorganic ligands, InP quantum dots, quantum dot color, enhancement films, quantum dot light-emitting diode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要