In Situ Monitoring Of Protein Transfer Into Nanoscale Channels

CELL REPORTS PHYSICAL SCIENCE(2021)

引用 7|浏览4
暂无评分
摘要
Protein transfer into nanoscale compartments is critical for many cellular/life processes, yet there are few reports on how compartment properties impact the protein orientation during a transfer. Such a knowledge gap limits a deeper understanding of the protein transfer mechanism, which could be bridged using nanoporous materials. Here, we use a mesoporous silica, a covalent organic framework, and a metal-organic framework with charged, hydrophobic, and neutral surfaces, respectively, to elucidate the impact of channel properties on the transfer of a model protein, lysozyme. Using site-directed spin labeling and time-resolved electron paramagnetic resonance spectroscopy, we reveal that the transfer can be a multistep process depending on channel properties and depict the relative orientation changes of lysozyme upon transfer into each channel. To the best of our knowledge, this is the first structural insight into protein orientation upon transfer into different compartments, meaningful for the rational design of synthetic materials to host enzymes or mimic the cellular compartments.
更多
查看译文
关键词
protein transfer,nanoscale channels,MOF,COF,SDSL,EPR spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要