Greenhouse Gas Emissions From Solid Waste Management In Saudi Arabia-Analysis Of Growth Dynamics And Mitigation Opportunities

APPLIED SCIENCES-BASEL(2021)

引用 17|浏览1
暂无评分
摘要
The continuous growth in population, urbanization, and industrial development has been increasing the generation of solid waste (SW) in the Kingdom of Saudi Arabia. Consequently, the associated greenhouse gas (GHG) emission is also following an increasing trend. The collection and use of greenhouse gases emitted from solid waste management practices are still limited. A causality analysis examined the driving factors of the emissions from solid waste management. The methane (CH4) emissions from municipal solid waste (MSW) increased with an increase in gross domestic product (GDP) per capita and urban population, and an increase in foreign direct investment (FDI) inflows and literacy rate was likely to reduce CH4 emissions from municipal solid waste and vice versa. The CH4 emission generated from industrial solid wastes was found to be positively related to GDP per capita, urban population, and FDI inflows. However, a decrease in the unemployment rate was likely to increase CH4 emissions from industrial solid wastes. The future greenhouse gas emissions were projected under different possible socio-economic conditions. The scenario analysis based on different variations of population and GDP growth revealed that methane emission from total waste would increase at an average annual rate of 5.13% between 2020 and 2050, and is projected to reach about 4000 Gg by the end of the year 2050. Although the Kingdom has been taking some initiatives towards climate change mitigation, it has significant opportunities to adopt some of the best practices in solid waste management including reduction, recycling, composting and waste-to-energy, and carbon capture and utilization. This study also put emphasis on developing appropriate policy approaches for climate change mitigation based on the circular economy which is gaining momentum in the Kingdom.
更多
查看译文
关键词
methane emission, municipal solid waste, industrial solid waste, IPCC, causality analysis, VECM models, VISION 2030
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要