Regulatory Reprogramming Of Erythropoiesis By Dnmt3a Mutation

BLOOD(2018)

引用 0|浏览1
暂无评分
摘要
DNA methyltransferase 3A (DNMT3A) regulates diverse epigenetic processes, and DNMT3A mutations occur frequently in myelodysplastic syndromes (MDS), including in founding clones of MDS samples. Most DNMT3A mutations affect Arg882 (R882) in the catalytic domain of DNMT3A, and are found almost exclusively in a heterozygous state. To resolve the relationship between the genetic and epigenetic architectures of R882H+ MDS, we engineered primary human CD34+ hematopoietic stem and progenitor cells (HSPCs) to carry heterozygous DNMT3A R882H and performed temporally resolved, genome-wide regulatory mapping via DNase-seq combined with RNA-seq during erythroid differentiation in vitro, and in an in vivo transplantation model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要