V2o5/Carbon Nanotube/Polypyrrole Based Freestanding Negative Electrodes For High-Performance Supercapacitors

CATALYSTS(2021)

引用 23|浏览1
暂无评分
摘要
In this study, the vanadium pentoxide (V2O5), functionalized carbon nanotubes (f-CNT), and polypyrrole (PPy) based composites films have been prepared through a facile synthesis method and their electrochemical performance were evaluated as freestanding negative electrodes of supercapacitor. A hydrous V2O5 gel prepared by treating V2O5 powder with H2O2 was mixed with f-CNT to obtain V2O5/f-CNT composite film. V2O5/f-CNT composite was then coated with PPy through vapor phase polymerization method. The PPy deposited on the V2O5/f-CNT prevented the dissolution of V2O5 and thus resulted in an improved the capacitance and cycle life stability for V2O5/f-CNT/PPy composite electrode. V2O5/f-CNT/PPy freestanding negative electrode exhibited a high areal capacitance value (1266 mF cm(-2) at a current density of 1 mA cm(-2)) and good cycling stability (83.0% capacitance retention after 10,000 charge-discharge cycles). The superior performance of the V2O5/f-CNT/PPy composite electrode can be attributed to the synergy between f-CNT with high conductivity and V2O5 and PPy with high-energy densities. Thus, V2O5/f-CNT/PPy composite based electrode can effectively mitigate the drawbacks of the low specific capacitance of CNTs and the poor cycling life of V2O5.
更多
查看译文
关键词
carbon nanotube, freestanding negative electrode, polypyrrole, vanadium pentoxide gel, supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要