6-Azasteroids - Structure-Activity-Relationships For Inhibition Of Type-1 And Type-2 Human 5-Alpha-Reductase And Human Adrenal 3-Beta-Hydroxy-Delta(5)-Steroid Dehydrogenase 3-Keto-Delta(5)-Steroid Isomerase

Sv Frye, Cd Haffner,Pr Maloney, Ra Mook, Gf Dorsey, Rn Hiner, Cm Cribbs, Tn Wheeler, Ja Ray,Rc Andrews, Kw Batchelor,Hn Bramson,Jd Stuart,Sl Schweiker, J Vanarnold, S Croom,Dm Bickett,Ml Moss, Gc Tian, Rj Unwalla, Fw Lee, Tk Tippin,Mk James, Mk Grizzle,Je Long,Sv Schuster

JOURNAL OF MEDICINAL CHEMISTRY(1994)

引用 77|浏览1
暂无评分
摘要
6-Azaandrost-4-en-3-ones were synthesized and tested versus human type 1 and 2 steroid 5 alpha-reductase (5AR) and human adrenal 3 beta-hydroxy-Delta(5)-steroid dehydrogenase/3-keto-Delta(5)-steroid isomerase (3BHSD) to explore the structure-activity relationship of this novel series in order to optimize potency versus both isozymes of 5AR and selectivity versus 3BHSD. Compounds with picomolar IC50's versus human type 2 5AR and low nanomolar K-i's versus human type 1 5AR with 100-fold selectivity versus 3BHSD were identified (70). Preliminary in vivo evaluation of some optimal compounds from this series in a chronic castrated rat model of 5AR inhibitor-induced prostate involution and dog pharmacokinetic measurements identified a series of 17 beta-[N-(diphenylmethyl)carbamoyl]-6-azaandrost-4-en-3-ones (compounds 54, 66, and 67) with good in vivo efficacy and half-life in the dog. Inhibitors with, at the minimum, low nanomolar potency toward both human 5AR's and selectivity versus 3BHSD may show advantages over previously known 5AR inhibitors in the treatment of disease states which depend upon dihydrotestosterone, such as benign prostatic hyperplasia.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要