Thermo-Electro-Rheological Behaviour Of Vanadium Electrolyte-Based Electrochemical Graphene Oxide Nanofluid Designed For Redox Flow Battery

JOURNAL OF MOLECULAR LIQUIDS(2021)

引用 26|浏览8
暂无评分
摘要
The use of electrolyte-based nanofluid is a new approach for enhancing the performance of Vanadium Redox Flow Batteries (VRFBs). This paper, for the first time in the literature, presents an experimental study to comprehensively investigate the rheological behaviour, electrical conductivity, and thermal conductivity of a newly prepared electrochemical graphene oxide (EGO)/ vanadium (IV) electrolyte-based nanofluid in different weight concentration and bulk temperatures. SEM, FT-IR and X-ray Diffraction (XRD) characterizations were performed and different functional groups, smooth 2D layered structures, and low crystallinity were detected in our tailored oxidation EGO which are amongst the enhancing features for VRFBs electrode materials. It was observed that the optimum weight concentration of nanopartides in the electrolyte-based nanofluid is 0.05 wt% with strong colloidal stability, enhanced electrical and thermal conductivities, and an optimal viscosity. The maximum feasible enhancements in electrical and thermal conductivities that were achieved were 12%, and 4%, respectively, which can positively affect the performance of flow battery in terms of electrochemical activity on the electrode surface and thermal management of the flow battery system. In addition, the rheological evaluation showed that the behaviour of the electrolyte-based nanofluid tends to change from Newtonian to non-Newtonian for weight concentrations higher than 0.05%. The results obtained from rheological behaviour can provide useful insights in choosing an optimum pumping system of the flow batteries working with electrolyte-based nanofluid. (C) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Rheological Properties, Electrical Conductivity, Thermal Conductivity, Electrolyte-based nanofluid, Vanadium Flow Battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要