The Effect Of Resolution On Vertical Heat And Carbon Transports In A Regional Ocean Circulation Model Of The Argentine Basin

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS(2021)

引用 7|浏览5
暂无评分
摘要
Simulations of the Argentine Basin have large uncertainties associated with quantities such as air-sea exchanges of heat and carbon in current generation climate models and ocean reanalysis products. This is due to the complex topography, profound undersampling until recent years, and strong currents and mixing of subpolar and subtropical water masses in the basin. Because mixing of water masses is important here, model resolution is hypothesized to play an important role in estimating ocean quantities and determining overall budgets. We construct three regional ocean models with biogeochemistry at 1/3 degrees, 1/6 degrees, and 1/12 degrees resolutions for the year 2017 to investigate heat and carbon dynamics in the region and determine the effect of model resolution on these dynamics. Initial conditions and boundary forcing from BSOSE (the Biogeochemical Southern Ocean State Estimate (Verdy & Mazloff, 2017), ) and atmospheric forcing from ERA5 are used. The models are evaluated for accuracy by comparing output to Argo and BGC-Argo float profiles, BSOSE, and other reanalyses and mapped products. We then quantify the effect of resolution on model upper ocean heat and carbon transport and the associated air-sea exchanges. We determine that increasing the resolution from 1/3 degrees to 1/12 degrees enhances the upward vertical transport and surface exchanges of heat but causes no significant effect on surface carbon fluxes despite enhancing downward transport of anomalous DIC.
更多
查看译文
关键词
Argentine Basin, model resolution, biogeochemistry, air-sea carbon flux, air-sea heat flux
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要