Computational Support On The Development Of Nuclear Heating Calorimeter Detector Design

ADVANCEMENTS IN NUCLEAR INSTRUMENTATION MEASUREMENT METHODS AND THEIR APPLICATIONS (ANIMMA 2019)(2020)

引用 3|浏览4
暂无评分
摘要
Heating due to energy deposition of intense ionizing radiation in samples and structural materials of nuclear reactors poses severe limitations in terms of cooling requirements for safe reactor operation, especially in high neutron and gamma flux environments of material testing fission reactors (MTRs) and novel fusion devices. A bilateral CEA-JSI research project was launched in 2018 with the objective to measure the gamma heating rates in standard reactor-related materials (graphite, aluminium, stainless steel and tungsten) as well as fusion-relevant materials (low-activation steel Eurofer-97 and Nb3Sn superconductor) in the JSI TRIGA reactor my means of gamma calorimeters. The calorimeter design will be based on the the CALMOS-2 calorimeter developed at the CEA and used to perform gamma heating measurements in the OSIRIS MTR in Saclay.In order to optimize the detector response inside the JSI TRIGA reactor field and not to perturb the measurement field, a detailed computational analysis was performed in terms of energy deposition assessment and measurement field perturbation using the MCNP v6.1 code, and in terms of heat transfer using the COMSOL Multiphysics code.The abovementioned activities enabled us to finalize the detector design with the experimental campaign planned for the end of year 2019.
更多
查看译文
关键词
Nuclear heating, calorimetry, Nb3Sn, Eurofer97, TRIGA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要