Modeling Of Heat Transfer And Energy Efficiency Performance Of Transient Cold Storage In Phase Change Thermal Storage Components

PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2016, VOL 1(2016)

引用 3|浏览0
暂无评分
摘要
This paper presents a design analysis framework for a transient cold storage unit that uses solid-liquid phase change for thermal storage. The analytical framework developed in this study establishes non-dimensional parameters that dictate the energy efficiency of the transient energy input and extraction processes, and specifies the links between physical parameters for the system and dimensionless parameters. The resulting governing equations in non-dimensional form are partial differential equations that can be solved numerically. Solutions of the equations predict the thermodynamic efficiency (effectiveness) of the energy storage and retrieval processes, and the time required to input or extract energy from storage for specified values of the dimensionless parameters. The paper illustrates how a high efficiency design target can be established for specified operating conditions using this framework. Application of this framework to a typical example application involving cold thermal storage is described, and the usefulness of this methodology is demonstrated. The use of this methodology for predicting the performance of cold thermal storage for a broad range of potential applications is also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要