Local Orthodontic Force Initiates Widespread Remodelling Of The Maxillary Alveolar Bone

AUSTRALASIAN ORTHODONTIC JOURNAL(2020)

引用 0|浏览1
暂无评分
摘要
Objectives: To clarify the effects of a local orthodontic force on alveolar bone by analysing bone remodelling in different regions of the maxilla during orthodontic tooth movement (OTM).Methods: An OTM model was established in rats. Histological changes in the maxilla were analysed using TRAP staining, IHC staining for CTSK and haematoxylin and eosin (H and E) staining. The root bifurcation region of the alveolar bone of the first (M1), second (M2) and third (M3) molars were selected as the regions of interest (ROIs), which were further divided into a cervical and an apical level. Sequential fluorochrome labelling was performed to analyse bone deposition rates.Results: The maxillary left first molars were moved mesially. TRAP staining and IHC staining for CTSK showed orthodontic force increased osteoclast numbers in all six ROIs at both the cervical and apical levels. H and E staining indicated elevated osteoblast numbers in the OTM group in all induced regions. Sequential fluorochrome labelling exhibited increased bone deposition rates around M1, M2 and M3 in the OTM group.Conclusions: An orthodontic force applied to the first molar could initiate widespread remodelling of the maxillary alveolar bone, which was not restricted to the tension and pressure sites. This may revise the orthodontic biomechanical theory and provide new insights for clinical work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要