Sustainable Alkaline Membrane Fuel Cell (Samfc)

PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2018(2018)

引用 0|浏览0
暂无评分
摘要
This work addresses the development and construction of a sustainable alkaline membrane fuel cell (SAMFC). The SAMFC couples an alkaline membrane fuel cell (AMFC) with a hydrogen generation reactor that uses recycled aluminum from soda cans to split the water molecule through the oxidation of aluminum catalyzed by sodium hydroxide. An innovative cellulosic membrane supports the electrolyte, which avoids the undesirable characteristics of liquid electrolytes, and asbestos or ammonia that are substances that have been used to manufacture alkaline electrolyte membranes, which are knowingly toxic and carcinogenic. Aluminum is an inexpensive, abundant element in the earth's crust and fully recyclable. Oxygen is supplied to the cell with atmospheric air that is pumped through a potassium hydroxide (KOH) aqueous solution in order to fix CO2, and in this way avoid potassium carbonate formation in order to keep the cell fully functional. A sustainable alkaline membrane fuel cell (SAMFC) system with one unitary cell, the reactor, and CO2 purifier was designed and built in the laboratory. The results are presented in polarization and power curves directly measured in the laboratory. Although recycled aluminum was used in the experiments, the results demonstrate that the cell was capable of delivering 0.9 V in open circuit and approximately 0.42 W of maximum power. The main conclusion is that by allowing for in situ sustainable hydrogen production, the SAMFC could eventually become economically competitive with traditional power generation systems.
更多
查看译文
关键词
fuel cell,samfc,membrane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要