A Review Of The Msca Itn Ecostore-Novel Complex Metal Hydrides For Efficient And Compact Storage Of Renewable Energy As Hydrogen And Electricity (Vol 8, 17, 2020)

INORGANICS(2020)

引用 0|浏览1
暂无评分
摘要
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel, sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However, there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+, Mg2+ and Ca2+, while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials, the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore, it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Sklodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE, the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
更多
查看译文
关键词
lithium ion conductor, anode materials, metal hydrides, solid-state conductors, solid-state electrolyte, Na-based closo-borates, all-solid-state batteries, beyond Li-ion, post Li-ion, hydrogen storage, amides, imides, eutectic borohydride, reactive hydride composites, rare earth, borohydrides, kinetics tailoring, Ti-based catalyst, nanoconfinement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要