High-Efficiency Perovskite Solar Cells With Poly(Vinylpyrrolidone)-Doped Sno2 As An Electron Transport Layer

MATERIALS ADVANCES(2020)

引用 32|浏览1
暂无评分
摘要
Hybrid organic-inorganic perovskites have attracted intensive attention as the absorber layer in high-performance perovskite solar cells (PSCs). The interface between the electron transport layer and the perovskite layer in perovskite solar cells has a large effect on the device performance. Herein, we report a perovskite solar cell with a cell structure of ITO/ETL/(FAPbI(3))(0.97)(MAPbBr(3))(0.03)/spiro-OMeTAD/MoO3/Ag, where the poly(vinylpyrrolidone) (PVP)-doped SnO2 film works as the electron transport layer. We observe that the perovskite film grown on PVP-SnO2 shows more uniform crystalline grains than the control sample grown on the pure SnO2, and the electron mobility of the PVP-SnO2 film is higher than that of the pure SnO2 film; consequently, PVP-SnO2 can efficiently extract electrons from the perovskite layer. As a result, the PSCs using the PVP-doped SnO2 ETL showed an increased power conversion efficiency (PCE). The optimized device using the PVP-SnO2 electron transport layer shows an improved PCE of 19.55%, while the PSC using the SnO2 electron transport later shows a PCE of 17.50%. Furthermore, it is feasible to add PVP into the electron transport layer of SnO2 to improve the performance of the planar perovskite solar cell device.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要