Simulations And Performance Of The Qubic Optical Beam Combiner

C. O'Sullivan,D. Burke,D. Gayer,J. D. Murphy,S. Scully,M. De Leo,M. De Petris,A. Mattei,A. Zullo,A. Mennella,M. Zannoni,N. Bleurvacq,C. Chapron,J-Ch. Hamilton,M. Piat, P. Ade,G. Amico,D. Auguste,J. Aumont, S. Banfi, G. Barbaran,P. Battaglia,E. Battistelli,A. Bau, B. Belier,D. Bennett, L. Berge,J-Ph. Bernard,M. Bersanelli,M-A. Bigot-Sazy,J. Bonaparte,J. Bonis, G. Bordier, E. Breelle, E. Bunn, D. Buzi, A. Buzzelli,F. Cavaliere, P. Chanial,R. Charlassier,F. Columbro,G. Coppi,A. Coppolecchia,F. Couchot,R. D'Agostino,G. D'Alessandro,P. De Bernardis,G. De Gasperis,A. Di Donato,L. Dumoulin, A. Etchegoyen,A. Fasciszewski,C. Franceschet,M. M. Gamboa Lerena,B. Garcia,X. Garrido,M. Gaspard,A. Gault,M. Gervasi,M. Giard, Y. Giraud-Heraud,M. Gomez Berisso,M. Gonzalez,M. Gradziel,L. Grandsire, E. Guerrard,D. Harari,V. Haynes, S. Henrot-Versille,D. T. Hoang,F. Incardona,E. Jules,J. Kaplan,A. Korotkov,C. Kristukat,L. Lamagna, S. Loucatos,T. Louis,A. Lowitz, V. Lukovic,R. Luterstein,B. Maffei,S. Marnieros,S. Masi,A. May,M. Mcculloch,M. C. Medina,L. Mele,S. Melhuish, L. Montier,L. M. Mundo,J. A. Murphy,E. Olivieri,A. Paiella, F. Pajot,A. Passerini,H. Pastoriza,A. Pelosi,C. Perbost,O. Perdereau,F. Pezzotta,F. Piacentini,L. Piccirillo,G. Pisano,G. Polenta,D. Prele,R. Puddu, D. Rambaud,P. Ringegni, G. E. Romero,M. Salatino,A. Schillaci,C. G. Scoccola,S. Spinelli,M. Stolpovskiy,F. Suarez,A. Tartari,J-P. Thermeau, P. Timbie,S. A. Torchinsky,M. Tristram, V. Truongcanh,C. Tucker,G. Tucker, S. Vanneste, D. Vigano,N. Vittorio, F. Voisin,B. Watson, F. Wicek

MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX(2018)

引用 3|浏览16
暂无评分
摘要
QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of l = 30 - 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer. It will directly observe the sky through an array of back-to-back entry horns whose beams will be superimposed using a cooled quasi-optical beam combiner. Images of the resulting interference fringes will be formed on two focal planes, each tiled with transition-edge sensors, cooled down to 320 mK. A dichroic filter placed between the optical combiner and the focal planes will select two frequency bands (centred at 150 GHz and 220 GHz), one frequency per focal plane. Polarization modulation will be achieved using a cold stepped half-wave plate (HWP) and polariser in front of the sky-facing horns.The full QUBIC instrument is described elsewhere(1,2,3,4); in this paper we will concentrate in particular on simulations of the optical combiner (an off-axis Gregorian imager) and the feedhorn array. We model the optical performance of both the QUBIC full module and a scaled-down technological demonstrator which will be used to validate the full instrument design. Optical modelling is carried out using full vector physical optics with a combination of commercial and in-house software. In the high-frequency channel we must be careful to consider the higher-order modes that can be transmitted by the horn array. The instrument window function is used as a measure of performance and we investigate the effect of, for example, alignment and manufacturing tolerances, truncation by optical components and off-axis aberrations. We also report on laboratory tests carried on the QUBIC technological demonstrator in advance of deployment to the observing site in Argentina.
更多
查看译文
关键词
CMB, B-modes, bolometric interferometry, QUBIC, physical optics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要