A Generalized Supervised Classification Scheme To Produce Provincial Wetland Inventory Maps: An Application Of Google Earth Engine For Big Geo Data Processing

BIG EARTH DATA(2019)

引用 56|浏览1
暂无评分
摘要
Wetlands are important natural resources due to their numerous ecological services. Consequently, identifying their locations and extents is imperative. The stability, repeatability, cost-effectiveness, multi-scale coverage, and proper spatial resolution imagery of satellites provide a valuable opportunity for their use in various large-scale applications, such as provincial wetland mapping. To do so, it is required to (1) process and classify big geo data (i.e. a large amount of satellite datasets) in a time- and computationally-efficient approach and (2) collect a large amount of field samples. In this study, Google Earth Engine (GEE) and machine learning algorithms were utilized to process thousands of remote sensing images and produce provincial wetland inventory maps of the three Canadian provinces of Manitoba, Quebec, and Newfoundland and Labrador (NL). Additionally, using GEE, a generalized supervised classification method is proposed to produce a regional wetland map from a large area (e.g., a province) when lacking field samples. In fact, using the field data from only Manitoba and assuming that all wetlands in Canada have similar characteristics, the wetland maps were generated for the other two provinces. The overall classification accuracies for Manitoba, Quebec, and NL were 84%, 78%, and 82%, respectively, indicating the high potential of the proposed method for aiding provincial wetland inventory systems.
更多
查看译文
关键词
Wetlands, remote sensing, Google Earth Engine, big geo data, image classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要