2-photon-fabricated nano-fluidic traps for extended detection of single macromolecules and colloids in solution

biorxiv(2021)

引用 2|浏览11
暂无评分
摘要
The analysis of nanoscopic species, such as proteins and colloidal assemblies, at the single-molecule level has become vital in many areas of fundamental and applied research. Approaches to increase the detection timescales for single molecules in solution without immobilising them onto a substrate surface and applying external fields are much sought after. Here we present an easy-to-implement and versatile nanofluidics-based approach that enables increased observational-timescale analysis of single biomacromolecules and nanoscale colloids in solution. We use two-photon-based hybrid lithography in conjunction with soft lithography to fabricate nanofluidic devices with nano-trapping geometries down to 100 nm in height. We provide a rigorous description and characterisation of the fabrication route that enables the writing of nanoscopic 3D structures directly in photoresist and allows for the integration of nano-trapping and nano-channel geometries within micro-channel devices. Using confocal fluorescence burst detection, we validated the functionality of particle confinement in our nano-trap geometries through measurement of particle residence times. All species under study, including nanoscale colloids, α-synuclein oligomers, and double-stranded DNA, showed a three to five-fold increase in average residence time in the detection volume of nano-traps, due to the additional local steric confinement, in comparison to free space diffusion in a nearby micro-channel. Our approach thus opens-up the possibility for single-molecule studies at prolonged observational timescales to analyse and detect nanoparticles and protein assemblies in solution without the need for surface immobilisation. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要