An optimized live bacterial delivery platform for the production and delivery of therapeutic nucleic acids and proteins

biorxiv(2021)

引用 0|浏览1
暂无评分
摘要
There is an unmet need for delivery platforms that realize the full potential of next-generation therapeutic and vaccine technologies, especially those that require intracellular delivery of nucleic acids. The in vivo usefulness of the current state-of-the-art delivery systems is limited by numerous intrinsic weaknesses, including lack of targeting specificity, inefficient entry and endosomal escape into target cells, undesirable immune activation, off-target effects, a small therapeutic window, limited genetic encoding and cargo capacity, and manufacturing challenges. Here we present our characterization of a delivery platform based on the use of engineered live, tissue-targeting, non-pathogenic bacteria ( Escherichia coli strain SVC1) for intracellular cargo delivery. The SVC1 bacteria are engineered to specifically bind to epithelial cells via a surface-expressed targeting ligand, to escape the endosome upon intracellularization, and to have minimal immunogenicity. Here we report findings on key features of this system. First, we demonstrated that bacterial delivery of a short hairpin RNA (shRNA) can target and silence a gene in an in vitro mammalian respiratory cell model. Next, we used an in vivo mouse model to demonstrate that SVC1 bacteria are invasive to epithelial cells of various tissues and organs (eye, nose, mouth, stomach, vagina, skeletal muscle, and lungs) via local administration. We also showed that repeat dosing of SVC1 bacteria to the lungs is minimally immunogenic and that it does not have adverse effects on tissue homeostasis. Finally, to validate the potential of SVC1 bacteria in therapeutic applications, we demonstrated that bacterial delivery of influenza-targeting shRNAs to the respiratory tissues can mitigate viral replication in a mouse model of influenza infection. Our ongoing work is focused on further refining this platform for efficient delivery of nucleic acids, gene editing machinery, and therapeutic proteins, and we expect that this platform technology will enable a wide range of advanced therapeutic approaches. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
live bacterial delivery platform,therapeutic nucleic acids,proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要