Neuroplastic Changes in the Superior Colliculus and Hippocampus in Self-rewarding Paradigm: Importance of Visual Cues

MOLECULAR NEUROBIOLOGY(2021)

引用 3|浏览11
暂无评分
摘要
Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue–dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.
更多
查看译文
关键词
Light cue, Superior colliculus, Hippocampus, Synaptic plasticity, Dopamine, Reward memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要