A Convolutional Neural Network Approach to Quantify Lung Disease Progression in Patients with Fibrotic Hypersensitivity Pneumonitis (HP).

Academic radiology(2021)

引用 5|浏览17
暂无评分
摘要
Rationale and Objectives To evaluate associations between longitudinal changes of quantitative CT parameters and spirometry in patients with fibrotic hypersensitivity pneumonitis (HP). Materials and Methods Serial CT images and spirometric data were retrospectively collected in a group of 25 fibrotic HP patients. Quantitative CT analysis included histogram parameters (median, interquartile range, skewness, and kurtosis) and a pretrained convolutional neural network (CNN)-based textural analysis, aimed at quantifying the extent of consolidation (C), fibrosis (F), ground-glass opacity (GGO), low attenuation areas (LAA) and healthy tissue (H). Results At baseline, FVC was 61(44-70) %pred. The median follow-up period was 1.4(0.8-3.2) years, with 3(2-4) visits per patient. Over the study, 8 patients (32%) showed a FVC decline of more than 5%, a significant worsening of all histogram parameters (p≤0.015) and an increased extent of fibrosis via CNN (p=0.038). On histogram analysis, decreased skewness and kurtosis were the parameters most strongly associated with worsened FVC (respectively, r2=0.63 and r2=0.54, p<0.001). On CNN classification, increased extent of fibrosis and consolidation were the measures most strongly correlated with FVC decline (r2=0.54 and r2=0.44, p<0.001). Conclusion CT histogram and CNN measurements provide sensitive measures of functional changes in fibrotic HP patients over time. Increased fibrosis was associated with FVC decline, providing index of disease progression. CNN may help improve fibrotic HP follow-up, providing a sensitive tool for progressive interstitial changes, which can potentially contribute to clinical decisions for individualizing disease management.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要