Dual domain recognition determines SARS-CoV-2 PLpro selectivity for human ISG15 and K48-linked di-ubiquitin

biorxiv(2021)

引用 9|浏览15
暂无评分
摘要
The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) genome is evolving as the viral pandemic continues its active phase around the world. The Papain-like protease (PLpro) is a domain of Nsp3 – a large multidomain protein that is an essential component of the replication-transcription complex, making it a good therapeutic target. PLpro is a multi-functional protein encoded in coronaviruses that can cleave viral polyproteins, poly-ubiquitin and protective Interferon Stimulated Gene 15 product, ISG15, which mimics a head-to-tail linked ubiquitin (Ub) dimer. PLpro across coronavirus families showed divergent selectivity for recognition and cleavage of these protein substrates despite sequence conservation. However, it is not clear how sequence changes in SARS-CoV-2 PLpro alter its selectivity for substrates and what outcome this has on the pathogenesis of the virus. We show that SARS-CoV-2 PLpro preferentially binds ISG15 over Ub and K48-linked Ub2. We determined crystal structures of PLpro in complex with human K48-Ub2 and ISG15 revealing that dual domain recognition of ISG15 drives substrate selectivity over Ub and Ub2. We also characterized the PLpro substrate interactions using solution NMR, cross-linking mass spectrometry to support that ISG15 is recognized via two domains while Ub2 binds primarily through one Ub domain. Finally, energetic analysis of the binding interfaces between PLpro from SARS-CoV-1 and SARS-CoV-2 with ISG15 and Ub2 define the sequence determinants for how PLpros from different coronaviruses recognize two topologically distinct substrates and how evolution of the protease altered its substrate selectivity. Our work reveals how PLpro substrate selectivity may evolve in PLpro coronaviruses variants enabling design of more effective therapeutics. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
Molecular modelling,NMR spectroscopy,Proteases,X-ray crystallography,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要