Inhibitory control of synaptic signals preceding motor action in mouse frontal cortex

biorxiv(2021)

引用 0|浏览5
暂无评分
摘要
Preparatory activity in the frontal cortex preceding movement onset is thought to represent a neuronal signature of motor planning. However, how excitatory and inhibitory synaptic inputs to frontal neurons are integrated during movement preparation remains unclear. Here we address this question by performing in vivo whole-cell patch-clamp recordings in the secondary motor cortex (MOs) of head-fixed mice moving on a treadmill. We find that both superficial and deep principal neurons show slowly increasing (~10 s) membrane potential and spike rate ramps preceding the onset of spontaneous, self-paced running periods. By contrast, in animals trained to perform a goal-directed task, both membrane potential and spike ramps are characterized by larger amplitudes and accelerated kinetics during preparation of goal-driven movement. To determine the role of local inhibitory neurons in shaping these task-dependent preparatory signals, we chemogenetically suppressed the activity of specific interneuron subpopulations in untrained animals. Inactivation of parvalbumin-positive (PV+) interneurons leads to depolarized membrane potential ramps with increased amplitudes during preparation of movement, while inactivation of somatostatin-positive (SOM+) interneurons abolishes membrane potential ramps. A computational model of the local MOs circuit shows that SOM+-mediated inhibition of PV+ interneurons in conjunction with recurrent connectivity among the principal neurons can reproduce slow ramping signals, while plasticity of excitatory synapses on SOM+ interneurons can explain the acceleration of these signals in trained animals. Together, our data reveal that local inhibitory neurons play distinct roles in controlling task-dependent preparatory ramping signals when MOs neurons integrate external inputs during motor planning. Highlights ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
mouse frontal cortex,inhibitory control,synaptic signals,motor action
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要