SALARECON connects the Atlantic salmon genome to growth and feed efficiency

PLOS COMPUTATIONAL BIOLOGY(2022)

引用 4|浏览27
暂无评分
摘要
Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is much interest in optimizing its genetics and rearing conditions for growth and feed efficiency. Marine feed ingredients must be replaced to meet global demand, with challenges for fish health and sustainability. Metabolic models can address this by connecting genomes to metabolism, which converts nutrients in the feed to energy and biomass, but such models are currently not available for major aquaculture species such as salmon. We present SALARECON, a model focusing on energy, amino acid, and nucleotide metabolism that links the Atlantic salmon genome to metabolic fluxes and growth. It performs well in standardized tests and captures expected metabolic (in)capabilities. We show that it can explain observed hypoxic growth in terms of metabolic fluxes and apply it to aquaculture by simulating growth with commercial feed ingredients. Predicted limiting amino acids and feed efficiencies agree with data, and the model suggests that marine feed efficiency can be achieved by supplementing a few amino acids to plant- and insect-based feeds. SALARECON is a high-quality model that makes it possible to simulate Atlantic salmon metabolism and growth. It can be used to explain Atlantic salmon physiology and address key challenges in aquaculture such as development of sustainable feeds. Author summary Atlantic salmon aquaculture generates billions of euros annually, but faces challenges of sustainability. Salmon are carnivores by nature, and fish oil and fish meal have become scarce resources in fish feed production. Novel, sustainable feedstuffs are being trialed hand in hand with studies of the genetics of growth and feed efficiency. This calls for a mathematical-biological framework to integrate data with understanding of the effects of novel feeds on salmon physiology and its interplay with genetics. We have developed the SALARECON model of the core salmon metabolic reaction network, linking its genome to metabolic fluxes and growth. Computational analyses show good agreement with observed growth, amino acid limitations, and feed efficiencies, illustrating the potential for in silico studies of potential feed mixtures. In particular, in silico screening of possible diets will enable more efficient animal experiments with improved knowledge gain. We have adopted best practices for test-driven development, virtual experiments to assay metabolic capabilities, revision control, and FAIR data and model management. This facilitates fast, collaborative, reliable development of the model for future applications in sustainable production biology.
更多
查看译文
关键词
atlantic salmon genome,salarecon,feed efficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要