Dynamic signatures of the Eureka effect: An EEG study

biorxiv(2021)

引用 1|浏览10
暂无评分
摘要
The Eureka effect refers to the common experience of suddenly solving a problem. Here we study this effect in a pattern recognition paradigm that requires the segmentation of complex scenes and recognition of objects on the basis of Gestalt rules and prior knowledge. In the experiments both sensory evidence and prior knowledge were manipulated in order to obtain trials that do or do not converge towards a perceptual solution. Subjects had to detect objects in blurred scenes and signal recognition with manual responses. Neural dynamics were analyzed with high-density Electroencephalography (EEG) recordings. The results show significant changes of neural dynamics with respect to spectral distribution, coherence, phase locking, and fractal dimensionality. The Eureka effect was associated with increased coherence of oscillations in the alpha and theta band over widely distributed regions of the cortical mantle predominantly in the right hemisphere. This increase in coherence was associated with a decrease of beta band activity over parietal and central regions, and with a decrease of alpha power over frontal and occipital areas. In addition, there was a lateralized reduction of fractal dimensionality for activity recorded from the right hemisphere. These results suggest that the transition towards the solution of a perceptual task is mainly associated with a change of network dynamics in the right hemisphere that is characterized by enhanced coherence and reduced complexity. We propose that the Eureka effect requires cooperation of cortical regions involved in working memory, creative thinking, and the control of attention. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
coherence, dimensionality, Eureka effect, lateralization, phase locking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要