Hundreds of Out-of-Frame Remodeled Gene Families in the Escherichia coli Pangenome

MOLECULAR BIOLOGY AND EVOLUTION(2022)

引用 5|浏览6
暂无评分
摘要
All genomes include gene families with very limited taxonomic distributions that potentially represent new genes and innovations in protein-coding sequence, raising questions on the origins of such genes. Some of these genes are hypothesized to have formed de novo, from noncoding sequences, and recent work has begun to elucidate the processes by which de novo gene formation can occur. A special case of de novo gene formation, overprinting, describes the origin of new genes from noncoding alternative reading frames of existing open reading frames (ORFs). We argue that additionally, out-of-frame gene fission/fusion events of alternative reading frames of ORFs and out-of-frame lateral gene transfers could contribute to the origin of new gene families. To demonstrate this, we developed an original pattern-search in sequence similarity networks, enhancing the use of these graphs, commonly used to detect in-frame remodeled genes. We applied this approach to gene families in 524 complete genomes of Escherichia coli. We identified 767 gene families whose evolutionary history likely included at least one out-of-frame remodeling event. These genes with out-of-frame components represent similar to 2.5% of all genes in the E. coli pangenome, suggesting that alternative reading frames of existing ORFs can contribute to a significant proportion of de novo genes in bacteria.
更多
查看译文
关键词
gene remodeling, overprinting, de novo gene formation, molecular evolution, network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要