Centromere drive and suppression by parallel pathways for recruiting microtubule destabilizers

biorxiv(2020)

引用 1|浏览2
暂无评分
摘要
Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this “centromere drive”. In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting heterochromatin by CENP-B deletion amplifies functional differences between centromeres, whereas disrupting the kinetochore pathway with a divergent allele of CENP-C reduces the differences. Molecular evolution analyses using newly sequenced Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
microtubule destabilizers,parallel pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要