Tracking tau fibrillogenesis and consequent primary phagocytosis of neurons mediated by microglia in a living tauopathy model

biorxiv(2020)

引用 3|浏览5
暂无评分
摘要
Fibrillary tau pathologies have been implicated in Alzheimer’s and allied neurodegenerative diseases, while mechanisms by which neurons bearing tau tangles die remain enigmatic. To address this issue, we pursued tau and related key pathologies macroscopically by PET and MRI and microscopically by intravital two-photon laser optics. Time-course macroscopic assays of tau transgenic mice demonstrated intimate associations of tau deposition and increase of an inflammatory microglial marker, translocator protein (TSPO), with regional brain atrophy. Longitudinal microscopy of these mice revealed a rapid turnover of tau lesions resulting from continuous generation of new tau aggregates followed by loss of neurons and their fibrillar contents. This technology also allowed the capturing of the disappearance of tangle-bearing neurons several days after being engulfed by activated microglia. Notably, a therapeutic TSPO ligand profoundly suppressed the mobility and phagocytotic activity of microglia and improved neuronal survival in this model, supporting the involvement of primary phagocytosis of viable neurons by microglia in tau-primed neuronal death. Finally, partial depletion of microglia revealed roles of immune factors, MFG-E8 and C1q, as ‘eat-me’ signals for an immediate attraction of phagocytic microglia towards the elimination of tangle-loaded neurons. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
tau fibrillogenesis,microglia,tauopathy,consequent primary phagocytosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要