Open Targets Genetics: An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

biorxiv(2020)

引用 10|浏览18
暂无评分
摘要
Genome-wide association studies (GWAS) have identified many variants robustly associated with complex traits but identifying the gene(s) mediating such associations is a major challenge. Here we present an open resource that provides systematic fine-mapping and protein-coding gene prioritization across 133,441 published human GWAS loci. We integrate diverse data sources, including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic and epigenomic data across many tissues and cell types. We also provide systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues and identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single gene. We trained a machine learning model using the fine mapped genetics and functional genomics data using 445 gold standard curated GWAS loci to distinguish causal genes from background genes at the same loci, outperforming a naive distance based model. Genes prioritized by our model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 11.5]). These results will be regularly updated and are publicly available through a web portal, Open Targets Genetics (OTG, ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要