Full-length isoform transcriptome of developing human brain provides new insights into autism

biorxiv(2021)

引用 0|浏览10
暂无评分
摘要
Alternative splicing plays important role in brain development, however its global contribution to human neurodevelopmental diseases (NDD) has not been fully investigated. Here, we examined the relationships between full-length splicing isoforms expression in the brain and de novo loss-of-function mutations identified in the patients with NDDs. We analyzed the full-length isoform transcriptome of the developing human brain and observed differentially expressed isoforms and isoform co-expression modules undetectable by gene-level analyses. These isoforms were enriched in loss-of-function mutations and microexons, co-expressed with a unique set of partners, and had higher prenatal expression. We experimentally tested the impact of splice site mutations in five NDD risk genes, including SCN2A , DYRK1A and BTRC, and demonstrated exon skipping. Furthermore, our results suggest that the splice site mutation in BTRC reduces translational efficiency, likely impacting Wnt signaling through impaired degradation of β-catenin. We propose that functional effect of mutations associated with human diseases should be investigated at the isoform-rather than the gene-level resolution. Highlights ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要