Real-Time Task Allocation of Heterogeneous Unmanned Aerial Vehicles for Search and Prosecute Mission

WIRELESS COMMUNICATIONS & MOBILE COMPUTING(2021)

引用 4|浏览0
暂无评分
摘要
In recent years, the Internet of Things (IoT) has developed rapidly after the era of computers and smart phones, which is expected to be applied to cities to improve the quality of life and realize the intelligence of smart cities. In particular, with the outbreak of coronavirus disease 2019 (COVID-19) last year, in order to reduce contact, some IoT devices, such as robots, unmanned aerial vehicles (UAVs), and unmanned vehicles, have played a great role in temperature monitoring, goods delivery, and so on. In this paper, we study the real-time task allocation problem of heterogeneous UAVs searching and delivering goods in the city. Considering the resource requirement of task and resource constraints of the UAV, when the resource of a single UAV cannot meet the requirement of the task, we propose a method of forming a UAV coalition based on contract net protocol. We analyze the coalition formation problem from two aspects: mission completion time and UAV's energy consumption. Firstly, the mathematical model is established according to the optimization objective and condition constraints. Then, according to the established mathematical model, different coalition formation algorithms are proposed. To minimize the mission completion time, we propose a two-stage coalition formation algorithm. Aiming at minimizing the UAV's energy consumption, it is transformed into a zero-one integer programming problem, which can be solved by the existing solver. Then, considering both mission completion time and energy consumption, we propose a coalition formation algorithm based on a resource tree. Finally, we design some simulation experiments and compare with the task allocation algorithm based on resource welfare. The simulation results show that our proposed algorithms are feasible and effective.
更多
查看译文
关键词
heterogeneous unmanned aerial vehicles,mission,real-time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要