Tunable Extraordinary Optical Transmission with Graphene in Terahertz

ACS OMEGA(2021)

引用 10|浏览6
暂无评分
摘要
Tunable extraordinary optical transmission (EOT) with graphene is realized using a novel metallic ring-rod nested structure in the terahertz frequency regime. The generated double-enhanced transmission peaks primarily originate from the excitation of localized surface plasmon resonances (LSPRs). On using graphene, the resonating surface plasmon distribution changes in the reaction plane, which disturbs the generation of LSPRs. By regulating the Fermi energy (E-f) of the graphene to reach a certain level, an adjustment from bimodal EOT to unimodal EOT is obtained. As the E-f of the graphene integrated beneath the rod increases to 0.5 eV, the transmittance of the peak at 2.42 THz decreases to 6%. Moreover, the transmission peak at 1.77 THz virtually disappears due to the E-f increasing to 0.7 eV when the graphene is placed beneath the ring. The significant tuning capabilities of the bimodal EOT indicate its promising application prospects in frequency-selective surfaces, communication, filtering, and radar.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要