Wastewater-based epidemiology: a new frontier for tracking environmental persistence and community transmission of COVID-19

Environmental science and pollution research international(2021)

引用 4|浏览0
暂无评分
摘要
Recent research in many parts of the world has pointed towards evidence of SARS-CoV-2 RNA in both treated and raw municipal wastewater discharged by communities. Therefore, concerns regarding it being a possible enteric virus are abundant. Past history of SARS-CoV-1 outbreaks and viral survival information helps in establishing information regarding possible viral infectivity and survival of SARS-CoV-2. The paper examines the existing strategies and techniques including the efficacy of laboratory-based RT-qPCR technique for tracking environmental persistence and community transmission of COVID-19. Analysis of studies targeting untreated and treated wastewater as source of samples is carried out. The analysis shows that untreated samples were mostly positive for SARS-CoV-2 RNA in the target studies. Infectivity estimation from viral load data was found to be about two orders of magnitude higher than actual case data in one of the studies. Additionally, relevant research on environmental survivability of SARS-CoV-2 and possible gaps are examined. Biosensors and excretion metabolite tracking in viral detection are also examined, which hold tremendous importance for future research. Wastewater-based epidemiology (WBE) shows incredible promise in the near future for tracking environmental persistence and community transmission of highly infectious diseases such as SARS-CoV-2. With limited research available on SARS-CoV-2 with regard to WBE, it is imperative that focus be established on the evidence-based targeted studies.
更多
查看译文
关键词
Bioaerosols,Biosensors,Enteric virus,Epidemiology,Municipal wastewater,SARS-CoV-2,Sewage,RT-qPCR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要