Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria

PLANT PHYSIOLOGY AND BIOCHEMISTRY(2021)

引用 4|浏览8
暂无评分
摘要
Net blotch, caused by the ascomycete Drechslera teres, can compromise barley production. Beneficial bacteria strains are of substantial interest as biological agents for plant protection in agriculture. Belonging to the genus Paraburkholderia, a bacterium, referred to as strain B25, has been identified as protective for barley against net blotch. The strain Paraburkholderia phytofirmans (strain PsJN), which has no effect on the pathogen's growth, has been used as control. In this study, the expression of target genes involved in cell wall-related processes, defense responses, carbohydrate and phenylpropanoid pathways was studied under various conditions (with or without pathogen and/or with or without bacterial strains) at different time-points (0-6-12-48 h). The results show that specific genes were subjected to a circadian regulation and that the expression of most of them increased in barley infected with D. teres and/or bacterized with the strain PsJN. On the contrary, a decreased gene expression was observed in the presence of strain B25. To complement and enrich the gene expression analysis, untargeted metabolomics was carried out on the same samples. The data obtained show an increase in the production of lipid compounds in barley in the presence of the pathogen. In addition, the presence of strain B25 leads to a decrease in the production of defense compounds in this crop. The results contribute to advance the knowledge on the mechanisms occurring at the onset of D. teres infection and in the presence of a biocontrol agent limiting the severity of net blotch in barley.
更多
查看译文
关键词
Barley, Biocontrol, Drechslera teres, Beneficial bacteria, RT-qPCR, Metabolomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要