Real-Time Monitoring Of The Sucrose Hydrolysis Process Based On Two-Photon Coincidence Measurements

BIOMEDICAL OPTICS EXPRESS(2021)

引用 3|浏览17
暂无评分
摘要
Real-time measurement of the biochemical reaction process has important application scenarios. Due to the chirality of a large number of life-sustaining molecules, many parameters of the reaction kinetics involving these chiral molecules, such as the reaction rate and the reagents concentrations, could be tracked by monitoring the optical activity of the substrate and/or product molecules. However, the optical activity of photosensitive biomolecules does not allow traditional laser-based real-time measurement due to the vulnerability of their biochemical properties under high-intensity light regimes. Here we introduce a real-time tracking technique of the sucrose hydrolysis reaction based on two-photon coincidence measurements. The two-photon source is generated based on a spontaneous parametric down-conversion process. During the reaction, the kinetic parameters are obtained by the real-time measurement of the change of the polarization of the photons when operating at extremely low-light regimes. Compared with single-photon counting measurements, two-photon coincidence measurements have higher signal-to-noise ratios and better robustness, which demonstrates the potential value in monitoring the photosensitive biochemical reaction processes. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要