Mining for encrypted peptide antibiotics in the human proteome

NATURE BIOMEDICAL ENGINEERING(2022)

引用 46|浏览17
暂无评分
摘要
The human proteome can be algorithmically mined to identify thousands of encrypted peptides, encoded in proteins with biological function unrelated to the immune system, that display antibacterial activity in vivo. The emergence of drug-resistant bacteria calls for the discovery of new antibiotics. Yet, for decades, traditional discovery strategies have not yielded new classes of antimicrobial. Here, by mining the human proteome via an algorithm that relies on the sequence length, net charge, average hydrophobicity and other physicochemical properties of antimicrobial peptides, we report the identification of 2,603 encrypted peptide antibiotics that are encoded in proteins with biological function unrelated to the immune system. We show that the encrypted peptides kill pathogenic bacteria by targeting their membrane, modulate gut and skin commensals, do not readily select for bacterial resistance, and possess anti-infective activity in skin abscess and thigh infection mouse models. We also show, in vitro and in the two mouse models of infection, that encrypted antibiotic peptides from the same biogeographical area display synergistic antimicrobial activity. Our algorithmic strategy allows for the rapid mining of proteomic data and opens up new routes for the discovery of candidate antibiotics.
更多
查看译文
关键词
Antimicrobials,Health care,Microbiology,Biomedicine,general,Biomedical Engineering/Biotechnology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要