Source apportionment and natural background levels of major ions in shallow groundwater using multivariate statistical method: A case study in Huaibei Plain, China.

Journal of environmental management(2021)

引用 22|浏览1
暂无评分
摘要
Understanding the sources, natural background levels (NBLs), and threshold values (TVs) of the major ions in groundwater is essential for the effective protection of water resources. In this study, a total of 70 shallow groundwater samples were collected in Suzhou, Huaibei Plain, China. A variety of statistical methods and cumulative probability distribution techniques were performed to identify the sources, NBLs, and TVs of the major ions. The major ion concentrations found in decreasing order as follows: HCO3- > SO42- > NO3- > Cl- and Na+ > Ca2+ > Mg2+. Piper diagram for hydrochemical types shows that groundwater types were Mg-HCO3 (36%), Ca-HCO3 (34%), and Na-HCO3 (30%). According to the factor and the Unmix model analysis, anthropogenic (agriculture-related) and geogenic source (water-rock interactions-related) were identified to be responsible for the chemical composition of the groundwater in the study area, and their mean contributions for the major ion concentrations are 47.9% and 52.1%, respectively. The NBLs for Na+, Ca2+, Mg2+, Cl-, SO42-, and NO3- were determined to be 29.5-44.2, 26.2-38.9, 18.9-39.5, 1.0-9.9, 12.9-19.4, and 2.1-16.5 mg/L, respectively, and the TVs were calculated as 122.1, 169.5, 39.5, 129.6, 134.7, and 18.3 mg/L, respectively. Moreover, this study shows the feasibility and reliability of using these multivariate statistical methods and natural background levels to evaluate the status of groundwater quality.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要