A functional corona around extracellular vesicles enhances angiogenesis during skin regeneration and signals in immune cells

bioRxiv(2021)

引用 4|浏览7
暂无评分
摘要
Nanoparticles can acquire a protein corona defining their biological identity. Corona functions were not yet considered for cell-derived extracellular vesicles (EVs). Here we demonstrate that nanosized EVs from therapy-grade human placental-expanded (PLX) stromal cells are surrounded by an imageable and functional protein corona when enriched with permissive technology. Scalable EV separation from cell-secreted soluble factors via tangential flow-filtration and subtractive tandem mass-tag proteomics revealed significant enrichment of predominantly immunomodulatory and proangiogenic proteins. Western blot, calcein-based flow cytometry, super-resolution and electron microscopy verified EV identity. PLX-EVs protected corona proteins from protease digestion. EVs significantly ameliorated human skin regeneration and angiogenesis in vivo, induced differential signaling in immune cells, and dose-dependently inhibited T cell proliferation in vitro. Corona removal by size-exclusion or ultracentrifugation abrogated angiogenesis. Re-establishing an artificial corona by cloaking EVs with defined proangiogenic proteins served as a proof-of-concept. Understanding EV corona formation will improve rational EV-inspired nanotherapy design. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要