High Throughput Evolution of Near Infrared Serotonin Nanosensors

biorxiv(2019)

引用 1|浏览2
暂无评分
摘要
Release and reuptake of neuromodulator serotonin, 5-HT, is central to mood regulation and neuropsychiatric disorders, whereby imaging serotonin is of fundamental importance to study the brain’s serotonin signaling system. We introduce a reversible near-infrared nanosensor for serotonin (nIRHT), for which synthetic molecular recognition toward serotonin is systematically evolved from ssDNA-carbon nanotube constructs generated from large libraries of 6.9 × 1010 unique ssDNA sequences. nIRHT produces a ∼200% fluorescence enhancement upon exposure to serotonin with a Kd = 6.3 µM affinity. nIRHT shows selective responsivity towards serotonin over serotonin analogs, metabolites, and receptor-targeting drugs, and a 5-fold increased affinity for serotonin over dopamine. Further, nIRHT can be introduced into the brain extracellular space in acute slice, and can be used to image exogenous serotonin reversibly. Our results suggest evolution of nanosensors could be generically implemented to rapidly develop other neuromodulator probes, and that these probes can image neuromodulator dynamics at spatiotemporal scales compatible with endogenous neuromodulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要