Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution

biorxiv(2019)

引用 0|浏览0
暂无评分
摘要
Evolutionary dynamics in large asexual populations is strongly influenced by multiple competing beneficial lineages, most of which segregate at very low frequencies. However, technical barriers to tracking a large number of these rare lineages have so far prevented a detailed elucidation of evolutionary dynamics in large bacterial populations. Here, we overcome this hurdle by developing a chromosomal barcoding technique that allows simultaneous tracking of ∼450,000 distinct lineages in E. coli. We used this technique to gather insights into the evolutionary dynamics of large (>107 cells) E. coli populations propagated for ∼420 generations in the presence of sub-inhibitory concentrations of common antibiotics. By deep sequencing the barcodes, we reconstructed trajectories of individual lineages at high frequency resolution (< 10−5). Using quantitative tools from ecology, we found that populations lost lineage diversity at distinct rates corresponding to their antibiotic regimen. Additionally, by quantifying the reproducibility of these dynamics across replicate populations, we found that some lineages had similar fates over independent experiments. Combined with an analysis of individual lineage trajectories, these results suggest how standing genetic variation and new mutations may contribute to adaptation to sub-inhibitory antibiotic levels. Altogether, our results demonstrate the power of high-resolution barcoding in studying the dynamics of bacterial evolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要