Key aspects of neurovascular control mediated by specific populations of inhibitory cortical interneurons

biorxiv(2019)

引用 0|浏览2
暂无评分
摘要
Inhibitory interneurons can evoke vasodilation and vasoconstriction, making them potential cellular drivers of neurovascular coupling. However, the specific regulatory roles played by particular interneuron subpopulations remain unclear. Our purpose was therefore to adopt a cell-specific optogenetic approach to investigate how somatostatin (SST) and neuronal nitric oxide synthase (NOS1)-expressing interneurons might influence neurovascular relationships. In mice, specific activation of SST- or NOS1-interneurons was sufficient to evoke haemodynamic changes similar to those evoked by physiological whisker stimulation. In the case of NOS1-interneurons, robust haemodynamic changes occurred with minimal changes in neural activity. Conversely, activation of SST-interneurons produced robust changes in evoked neural activity with shallow cortical excitation and pronounced deep layer cortical inhibition. This often resulted in a central increase in blood volume with corresponding surround decrease, analogous to the negative BOLD signal. These results demonstrate the role of specific populations of cortical interneurons in the active control of neurovascular function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要