Chloroplast membrane lipid remodeling protects against dehydration by limiting membrane fusion and distortion

PLANT PHYSIOLOGY(2022)

引用 8|浏览5
暂无评分
摘要
Dehydration damages the structural integrity of the chloroplast membrane and, consequently, the normal photosynthetic function of this organelle. Remodeling of galactolipids by converting monogalactosyl-diacylglycerol (MGDG) to digalactosyl-diacylglycerol (DGDG) and oligo-galactolipids is an effective adaptation strategy for protecting against dehydration damage to the chloroplast membrane. However, detailed molecular mechanisms are missing. In this study, by performing molecular-level simulations of bi-lamellar membranes under various dehydration conditions, we find that MGDG-to-DGDG remodeling protects the chloroplast membrane in a unique manner by simultaneously dictating both the extent and the pattern of fusion stalks formed with the apposed membrane. Specifically, MGDG-rich membranes form elongated stalks at a moderate dehydration level, whereas DGDG-rich membranes form smaller, rounded stalks. Simulations of wildtype and mutant Arabidopsis (Arabidopsis thaliana) outer chloroplast membranes further confirm that the mutant membrane without galactolipid remodeling is more susceptible to membrane fusion due to its higher MGDG content. Our work reveals the underlying physical mechanisms that govern the pattern and extent of membrane fusion structures, paving the way for rational genetic engineering of crops with improved dehydration tolerance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要