A needle tip CCEA microfluidic device based on enhanced Dean flow for cell washing

MICROSYSTEMS & NANOENGINEERING(2021)

引用 4|浏览6
暂无评分
摘要
Particle/cell washing is an essential technique in biological and clinical manipulations. Herein, we propose a novel circular contraction–expansion array (CCEA) microdevice. It can be directly connected to a needle tip without connection tubes. Its small size and centrosymmetric structure are beneficial to low sample consumption, high connection stability, and a wide application range. Computational fluid dynamics (CFD) simulation results show that the CCEA structure can produce a stronger Dean flow and lead to faster particle/cell focusing than the circle structure and CEA structure with the same length. Experimentally, an optimal flow rate ratio of 1:3 and an optimal total flow rate of 120 μL/min were found to ensure a stable fluid distribution. Under these conditions, rapid focusing of 10–20 μm particles with high efficiencies was achieved. Compared with a normal CEA device using tubes, the particle loss rate could be reduced from 64 to 7% when washing 500 μL of a rare sample. Cell suspensions with concentrations from 3 × 10 5 /mL to 1 × 10 3 /mL were tested. The high cell collection efficiency (>85% for three cell lines) and stable waste removal efficiency (>80%) reflected the universality of the CCEA microfluidic device. After the washing, the cell activities of H1299 cells and MCF-7 cells were calculated to be 93.8 and 97.5%, respectively. This needle-tip CCEA microfluidic device showed potential in basic medical research and clinical diagnosis.
更多
查看译文
关键词
Chemistry,Nanoscale devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要