Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy

Acta Biomaterialia(2022)

引用 25|浏览5
暂无评分
摘要
Photodynamic therapy (PDT) is an effective noninvasive therapeutic strategy that can convert oxygen to highly cytotoxic singlet oxygen (1O2) through the co-localization of excitation light and photosensitizers. However, compromised by the hypoxic tumor microenvironment, the therapeutic efficacy of PDT is reduced seriously. Herein, to overcome tumor-associated hypoxia, and further achieve tumor-targeted synergistic chemotherapy/PDT/photothermal therapy (PTT), we have constructed a biodegradable oxygen-producing nanoplatform (named Ini@PM-HP), which was composed of the porous metal-organic framework (PCN-224(Mn)), the poly (ADP-ribose) polymerase (PARP) inhibitor (Iniparib), and the polydopamine-modified hyaluronic acid (HA-PDA). Since HA can specifically bind to the overexpressed HA receptors (cluster determinant 44, CD44) on tumor cell, Ini@PM-HP prefers to accumulate at the tumor site once injected intravenously. Then iniparib can be released in tumor environment (TME), thereby dysfunctioning DNA damage repair and promoting cell apoptosis. At the same time, the chelating of Mn and tetrakis(4-carboxyphenyl) porphyrin (Mn-TCPP) can generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic TME and achieving enhanced PDT. Moreover, owing to the high photothermal conversion efficiency of PDA, PTT can be driven by the 808 nm laser irradiation. As systematically demonstrated in vitro and in vivo, this nanotherapeutic approach enables the combined therapy with great inhibition on tumor. Overall, the as-prepared nanoplatform provide a promising strategy to overcome tumor-associated hypoxia, and shows great potential for combination tumor therapy.
更多
查看译文
关键词
Metal organic frameworks,PARP inhibitor,Hypoxia-relieving,Synergistic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要