Dual phenotype of MDA-MB-468 cancer cells reveals mutual regulation of tensin3 and adhesion plasticity

biorxiv(2017)

引用 0|浏览1
暂无评分
摘要
Plasticity between adhesive and less-adhesive states is important for mammalian cell behaviour. To investigate adhesion plasticity, we have selected a stable isogenic subpopulation of MDA-MB-468 breast carcinoma cells which grows in suspension. These suspension cells are unable to re-adhere to various matrices or to contract three-dimensional collagen lattices. By transcriptome analysis, we identified the focal adhesion protein tensin3 (Tns3) as a determinant of adhesion plasticity. Tns3 is strongly reduced on mRNA and protein level in suspension cells. Furthermore, challenging breast cancer cells transiently with non-adherent conditions markedly reduces Tns3 expression, which is regained upon re-adhesion. Stable knockdown of Tns3 in parental cells results in defective adhesion, spreading and migration. Tns3 knockdown cells display impaired structure and dynamics of focal adhesion complexes as determined by immunostaining. Restoration of Tns3 expression in suspension cells partially rescues adhesion and focal contact composition. Our work identifies Tns3 as a critical focal adhesion component regulated by, and functionally contributing to, the switch between adhesive and non-adhesive states in MDA-MB-468 cancer cells. Summary statement We identify the cell-matrix adapter protein tensin3 as a determinant of adhesion plasticity, using cancer cells selected for non-adherent growth. Tensin3 expression constitutes a feedback loop controlling adhesion and motility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要