Serum peptidome: diagnostic window into pathogenic processes following occupational exposure to carbon nanomaterials

PARTICLE AND FIBRE TOXICOLOGY(2021)

引用 2|浏览7
暂无评分
摘要
Background Growing industrial use of carbon nanotubes and nanofibers (CNT/F) warrants consideration of human health outcomes. CNT/F produces pulmonary, cardiovascular, and other toxic effects in animals along with a significant release of bioactive peptides into the circulation, the augmented serum peptidome. While epidemiology among CNT/F workers reports on few acute symptoms, there remains concern over sub-clinical CNT/F effects that may prime for chronic disease, necessitating sensitive health outcome diagnostic markers for longitudinal follow-up. Methods Here, the serum peptidome was assessed for its biomarker potential in detecting sub-symptomatic pathobiology among CNT/F workers using label-free data-independent mass spectrometry. Studies employed a stratified design between High (> 0.5 µg/m 3 ) and Low (< 0.1 µg/m 3 ) inhalable CNT/F exposures in the industrial setting. Peptide biomarker model building and refinement employed linear regression and partial least squared discriminant analyses. Top-ranked peptides were then sequence identified and evaluated for pathological-relevance. Results In total, 41 peptides were found to be highly discriminatory after model building with a strong linear correlation to personal CNT/F exposure. The top-five peptide model offered ideal prediction with high accuracy (Q 2 = 0.99916). Unsupervised validation affirmed 43.5% of the serum peptidomic variance was attributable to CNT/F exposure. Peptide sequence identification reveals a predominant association with vascular pathology. ARHGAP21, ADAM15 and PLPP3 peptides suggest heightened cardiovasculature permeability and F13A1, FBN1 and VWDE peptides infer a pro-thrombotic state among High CNT/F workers. Conclusions The serum peptidome affords a diagnostic window into sub-symptomatic pathology among CNT/F exposed workers for longitudinal monitoring of systemic health risks. Graphical abstract
更多
查看译文
关键词
Carbon nanotubes, Carbon nanofibers, Biomarkers, Peptidomics, Mass spectrometry, Cardiovascular, Health outcomes, Occupational, Nanotoxicology, Nanomaterials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要