Nonadiabatic Coupling Effects in the 800 nm Strong-Field Ionization-Induced Coulomb Explosion of Methyl Iodide Revealed by Multimass Velocity Map Imaging and Ab Initio Simulation Studies

JOURNAL OF PHYSICAL CHEMISTRY A(2021)

引用 4|浏览9
暂无评分
摘要
The Coulomb explosion (CE) of jet-cooled CH3I molecules using ultrashort (40 fs), nonresonant 805 nm strong-field ionization at three peak intensities (260, 650, and 1300 TW cm(-2)) has been investigated by multimass velocity map imaging, revealing an array of discernible fragment ions, that is, Iq+ (q <= 6), CHn+ (n = 0-3), CHn2+ (n = 0, 2), C3+, H+, H2+, and H3+. Complementary ab initio trajectory calculations of the CE of CH(3)IZ(+) cations with Z <= 14 identify a range of behaviors. The CE of parent cations with Z = 2 and 3 can be well-described using a diatomic-like representation (as found previously) but the CE dynamics of all higher CH(3)IZ(+) cations require a multidimensional description. The ab initio predicted Iq+ (q >= 3) fragment ion velocities are all at the high end of the velocity distributions measured for the corresponding Iq+ products. These mismatches are proposed as providing some of the clearest insights yet into the roles of nonadiabatic effects (and intramolecular charge transfer) in the CE of highly charged molecular cations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要