Influence of Radiation Dose and Reconstruction Kernel on Fat Fraction Analysis in Dual-energy CT: A Phantom Study.

In vivo (Athens, Greece)(2021)

引用 2|浏览4
暂无评分
摘要
BACKGROUND/AIM:The quantitative evaluation of fat tissue, mainly for the determination of liver steatosis, is possible by using dual-energy computed tomography. Different photon energy acquisitions allow for estimation of attenuation coefficients. The effect of variation in radiation doses and reconstruction kernels on fat fraction estimation was investigated. MATERIALS AND METHODS:A six-probe-phantom with fat concentrations of 0%, 20%, 40%, 60%, 80%, and 100% were scanned in Sn140/100 kV with radiation doses ranging between 20 and 200 mAs before and after calibration. Images were reconstructed using iterative kernels (I26,Q30,I70). RESULTS:Fat fractions measured in dual-energy computed tomography (DECT) were consistent with the 20%-stepwise varying actual concentrations. Variation in radiation dose resulted in 3.1% variation of fat fraction. Softer reconstruction kernel (I26) underestimated the fat fraction (-9.1%), while quantitative (Q30) and sharper kernel (I70) overestimated fat fraction (10,8% and 13,1, respectively). CONCLUSION:The fat fraction in DECT approaches the actual fat concentration when calibrated to the reconstruction kerneö. Variation of radiation dose caused an acceptable 3% variation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要