Highly Sensitive Detection of miR-21 through Target-Activated Catalytic Hairpin Assembly of X-Shaped DNA Nanostructures

ANALYTICAL CHEMISTRY(2021)

引用 22|浏览3
暂无评分
摘要
MicroRNAs (miRNAs) are found in extremely low concentrations in cells, so highly sensitive quantitation is a great challenge. Herein, a simple dual-amplification strategy involving target-activated catalytic hairpin assembly (CHA) coupled with multiple fluorophores concentrated on one X-shaped DNA is reported. In this strategy, four hairpin probes (H1, H2, H3, and H4) are modified with FAM and BHQ1 at both sticky ends, while a circulating hairpin probe (H0) is used to activate CHA circuits once it binds to complementary sequences in the target miR-21 (T). The powerful dual-amplification cascades in Forster resonance energy transfer (FRET)-based nonenzymatic nucleic acid circuits are triggered by T-H0-activated formation of the X-shaped DNA nanostructure, freeing T-H0 for the next CHA reaction cycle. CHA circuits increase the fluorescence due to the wide distance between FAM and BHQ1 in the formed X-shaped DNA nanostructure, resulting in signal amplification and highly sensitive detection of miR-21, with a limit of detection (LOD, 3 sigma) of 0.025 nM, which is 25.6 or 57.6 times lower than that obtained through a single-amplification strategy without multiple fluorophores on one X-shaped DNA or CHA circuit. Furthermore, this cascade reaction was completed in 45 min, effectively avoiding target degradation. This new enzyme-free signal amplification strategy holds promising potential for sensitively detecting different DNA or RNA sequences by simply adapting the fragment of the H0 sequence complementary to the target.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要