Assessing the differential sensitivities of wave-CAIPI ViSTa myelin water fraction and magnetization transfer saturation for efficiently quantifying tissue damage in MS.

Multiple sclerosis and related disorders(2021)

引用 4|浏览10
暂无评分
摘要
BACKGROUND:Wave-CAIPI Visualization of Short Transverse relaxation time component (ViSTa) is a recently developed, short-T1-sensitized MRI method for fast quantification of myelin water fraction (MWF) in the human brain. It represents a promising technique for the evaluation of subtle, early signals of demyelination in the cerebral white matter of multiple sclerosis (MS) patients. Currently however, few studies exist that robustly assess the utility of ViSTa MWF measures of myelin compared to more conventional MRI measures of myelin in the brain of MS patients. Moreover, there are no previous studies evaluating the sensitivity of ViSTa MWF for the non-invasive detection of subtle tissue damage in both normal-appearing white matter (NAWM) and white matter lesions of MS patients. As a result, a central purpose of this study was to systematically evaluate the relationship between myelin sensitivity of T1-based ViSTa MWF mapping and a more generally recognized metric, Magnetization Transfer Saturation (MTsat), in healthy control and MS brain white matter. METHODS:ViSTa MWF and MTsat values were evaluated in automatically-classified normal appearing white matter (NAWM), white matter (WM) lesion tissue, cortical gray matter, and deep gray matter of 29 MS patients and 10 healthy controls using 3T MRI. MWF and MT sat were also assessed in a tract-specific manner using the Johns Hopkins University WM atlas. MRI-derived measures of cerebral myelin content were uniquely compared by employing non-normal distribution-specific measures of median, interquartile range and skewness. Separate analyses of variance were applied to test tissue-specific differences in MTsat and ViSTa MWF distribution metrics. Non-parametric tests were utilized when appropriate. All tests were corrected for multiple comparisons using the False Discovery Rate method at the level, α=0.05. RESULTS:Differences in whole NAWM MS tissue damage were detected with a higher effect size when using ViSTa MWF (q = 0.0008; ƞ2 = 0.34) compared to MTsat (q = 0.02; ƞ2= 0.24). We also observed that, as a possible measure of WM pathology, ViSTa-derived NAWM MWF voxel distributions of MS subjects were consistently skewed towards lower MWF values, while MTsat voxel distributions showed reduced skewness values. We further identified tract-specific reductions in mean ViSTa MWF of MS patients compared to controls that were not observed with MTsat. However, MTsat (q = 1.4 × 10-21; ƞ2 = 0.88) displayed higher effect sizes when differentiating NAWM and MS lesion tissue. Using regression analysis at the group level, we identified a linear relationship between MTsat and ViSTa MWF in NAWM (R2 = 0.46; p = 7.8 × 10-4) lesions (R2 = 0.30; p = 0.004), and with all tissue types combined (R2 = 0.71; p = 8.4 × 10-45). The linear relationship was also observed in most of the WM tracts we investigated. ViSTa MWF in NAWM of MS patients correlated with both disease duration (p = 0.02; R2 = 0.27) and WM lesion volume (p = 0.002; R2 = 0.34). CONCLUSION:Because ViSTa MWF and MTsat metrics exhibit differential sensitivities to tissue damage in MS white matter, they can be collected in combination to provide an efficient, comprehensive measure of myelin water and macromolecular pool proton signals. These complementary measures may offer a more sensitive, non-invasive biopsy of early precursor signals in NAWM that occur prior to lesion formation. They may also aid in monitoring the efficacy of remyelination therapies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要